
Python Handbook
Syntax, Variables, and Control Structures

Student Reference Guide

Learning Python is a great way to start a career in a world where technology is becoming more
and more important. This guide covers relevant points, such as syntax, variables, and control
structures, the foundation for developing applications efficiently.

Introduction

Have you ever wondered how to get started in the world of programming without feeling
overwhelmed? Python is the answer.

Python is a programming language known for its clear syntax that suits both novices and
experts. Its use covers a multitude of areas, from web development to artificial intelligence.

This guide covers only the basic principles of Python, that is, it focuses on syntax, variable
handling, and control structures, since mastering these aspects is vital to creating complex and
efficient programs.

Understanding these fundamentals is crucial. It not only improves your ability with Python. It
also prepares you to be able to explore more advanced areas of the language.

Python Syntax

Python is known for its simple and easy-to-read syntax, making it an ideal language for
programmers of all levels.

Python syntax was designed to be intuitive and promote clean, readable code, following the Zen
of Python principle that “beautiful is better than ugly.” This is reflected in the way code is written
and structured in Python, making it easier to understand and maintain.

Meaningful Whitespace

Unlike other languages, Python uses whitespace (indentation) to define the structure of code
rather than specific braces or keywords.

This means that the level of indentation of a line of code indicates its relationship to the lines
before it, thus establishing blocks of code. For example, all statements belonging to the same
function must have the same level of indentation.

Comments

Comments in Python are made using the # symbol for single-line comments, and triple double
quotes """ for multi-line comments or docstrings, which are especially useful for documenting
the purpose of functions and classes.

Variables and Data Type

In Python, variables are like magic boxes where you can store almost anything you want,
without having to label them with specific types.

This flexibility comes from being a dynamically typed language, which means that Python
understands what type of object you are storing at the time you store it.

This is because Python infers the data type, allowing for a more streamlined and less verbose
syntax. For example, to assign a value to a variable, you simply use the equal sign (=) without
needing to specify what it will store:

my_variable = 10

Data Types

In Python, fundamental data types define the category of values that a variable can store and
how the interpreter handles that variable. Understanding these types is crucial to effectively
manipulating data in Python. Let's look at the most common ones:

Numbers

Python supports several numeric types, including integers (int), floating-point numbers (float),
and complex numbers (complex) that can be combined using operators. Integers can be of any
length, floating-point numbers have double precision, and complex numbers include both a real
and an imaginary part.

integer = 10
float = 10.5
complex = 3 + 5j

Strings

Python strings are defined in single (') or double (") quotes, and can contain alphanumeric
characters and symbols. Python also supports multiline strings, which are defined with triple
quotes (''' or """).

single_string = 'Hello, World'
multiline_string = """This is a multiline string in Python."""

Booleans

Booleans represent two values: True and False. They are widely used in conditional
expressions and loops.

true = True
false = False
true and false # Will return False
true or false # Will return True

Lists

Lists are data structures that allow you to store an ordered, mutable collection of elements. The
elements can be of different types, including another list.

my_list = [1, 2.5, 'Python', [3, 4]]

Tuples

Tuples are similar to lists, but are immutable. Once a tuple is created, its elements cannot be
modified. It is a lighter type since its manipulation is minimal.

my_tuple = (1, 2.5, 'Python')

Dictionaries

Dictionaries store key-value pairs, being a mutable structure. Keys must be unique and can be
of any immutable type.

my_dictionary = {'name': 'John', 'age': 30, 'languages': ['Python', 'JavaScript']}

Sets

Sets are unordered collections of unique elements. They are useful for performing set
operations such as unions, intersections, and differences.

my_set = {1, 2, 3, 4, 5}

Each data type in Python is designed to be used in different scenarios, providing great flexibility
and efficiency in data handling. Knowing these types, developers can choose the most suitable
structure for their specific needs, thus optimizing their programs.

Variable Management

Variable management in Python is a fundamental aspect that allows programmers to store,
modify, and retrieve data during the execution of a program. Python simplifies this management
through a dynamic and flexible approach, which fits the needs of various types of applications.
Here we will explore how variables are declared, used, and managed in Python.

Declaration and Assignment

In Python, variables are created the moment they are assigned a value for the first time. There
is no need to explicitly declare them with a specific type, as the data type is inferred from the
assigned value. This makes the code cleaner and easier to write and understand.

codex = 10 # Integer
y = 3.14 # Float
name = "Anna" # String

Dynamic Typing

Python is a dynamically typed language, meaning that the type of a variable can change during
the execution of the program. This provides a great deal of flexibility, but also requires the
programmer to be aware of the data types they are working with in order to avoid errors.

number = 42 # Here 'number' is an integer
number = "forty-two" # Now 'number' becomes a string

Variable Names

Variable names in Python can contain letters, numbers, and the underscore character (_), but
they cannot start with a number. Also, Python is case-sensitive, meaning that variable, Variable,
and VARIABLE would be three different variables.

Scope of Variables

The scope of a variable determines the part of the program in which the variable is accessible.
Python has two main scopes: local and global. Variables defined inside a function have a local
scope, while those defined outside any function are global.

def my_function():
var_local = "This is local"
var_global = "This is global"

Global and nonlocal keywords

To modify a global variable inside a function, the global keyword must be used. Similarly,
nonlocal allows you to modify variables of higher scopes in nested functions.

counter = 0
def increment():
 global counter
 counter += 1

Efficient variable management is crucial for developing program logic in Python. Understanding
how to declare, assign, and manage variable scope allows developers to write cleaner, more
efficient, and more maintainable code.

Control structures

Control structures in Python allow you to direct the execution flow of a program. These
structures are essential for making decisions in your code, repeating operations, and controlling
the execution process based on different conditions. Python offers several control structures,
each tailored to specific needs. Control structures in Python include logical conditionals (if,
elif, else) and loops (for, while). These structures allow you to direct the flow of program
execution based on specific conditions or repeat a block of code multiple times.

These structures provide simplified ways to write certain pieces of code and generate
instructions that can be executed depending on certain conditions and a controlled number of
times.
Conditionals: if, elif, else

The if statement allows you to execute a block of code if a specific condition is true. elif and else
are used to check multiple conditions and define a course of action for each.

age = 18
if age < 18:

print("Minor")
elif age >= 18:

print("Of legal age")
else:

print("This code will never be executed")

Loops: for and while

Loops allow you to execute a block of code repeatedly. Python provides two types of loops: for
and while. The for loop is used to iterate over a sequence (such as a list, tuple, dictionary, set,
or string). The while loop runs as long as a condition is true.

For loop

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:

print(fruit)

While loop

counter = 0
while counter < 3:

print("Inside the loop")
counter += 1

List Comprehensions

List comprehensions are one of the coolest features of Python that offer a concise way to create
collections of items. They consist of an expression followed by a for loop inside brackets, which
not only allows you to populate such a list, but also allows you to filter elements from another list
or operate on the elements efficiently.

squares = [x**2 for x in range(10)]

For example, this list comprehension will create a list of the first 10 squares ([1, 4, 9, 16...100]).

Flow Control: break, continue, pass

break terminates the nearest loop.
continue skips the rest of the code inside the loop and continues with the next iteration.
pass is used as a fill or place statement; it has no effect.

for num in range(5):
if num == 3:

Break # Exits the loop
print(num) # If num is diffirent to 3, will print num

These control structures are the basic blocks that allow Python developers to write flexible and
efficient code. By intelligently using these structures, complex problems can be solved
effectively and more dynamic and interactive programs can be created.

Functions: Maximizing Code Reuse

Functions in Python are organized, reusable blocks of code that are designed to perform a
specific task. They offer an efficient way to divide a program into modules, making the code
easier to read and maintain.

Defining a Function

To define a function in Python, you use the def keyword, followed by the function name and
parentheses that can contain arguments.

Arguments are values that are passed to the function for use in its execution. After the
parentheses, you place a colon (:) and the indented code block that forms the body of the
function.

def greet(name):
print(f"Hello, {name}!")

To run a function, you type its name followed by parentheses. If the function expects
arguments, they must be provided within the parentheses.

greet("World")

Return Values

Functions can return values using the return keyword. This allows the result of a function to be
assigned to a variable or used in any other way.

def add(a, b):
return a + b

result = add(5, 3)
print(result) # Prints: 8

Default Arguments

Python allows you to define default values for function arguments. This means that the function
can be called with fewer arguments than it expects, using default values for the missing ones.

def print_message(message="Hello, Python!"):
print(message)

print_message() # Use the default value
print_message("Another message") # Override the default value

Keyword Arguments

When calling a function, you can specify arguments by name, which allows you to ignore the
order in which parameters are defined and make your code clearer.

def describe_person(name, age):
print(f"Name: {name}, Age: {age}")

describe_person(age=30, name="Anna")
args and *kwargs

Python offers a special syntax for passing a variable number of arguments to a function: *args
for unnamed argument lists and **kwargs for named arguments.

def function_with_multiple_arguments(*args, **kwargs):
print(args) # Tuple of unnamed arguments
print(kwargs) # Dictionary of named arguments

 function_with_multiple_arguments(1, 2, three=3, four=4)

This allows you to generically take any number of arguments in order or named arguments,
allowing you to create functions that respond dynamically to what you put into them.

The use of functions is fundamental in Python, since even though it is general purpose, it has a
strong orientation towards functional development, allowing you to create more modular and
reusable code.

